Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genom Data ; 25(1): 23, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408920

RESUMO

BACKGROUND: Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates. METHODS: In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species. RESULTS: A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.


Assuntos
Transcriptoma , Triploidia , Animais , Filogenia , Transcriptoma/genética , Isoformas de Proteínas/genética , Serpentes/genética
3.
Cell ; 186(14): 2959-2976.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339633

RESUMO

Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.


Assuntos
Genoma , Serpentes , Animais , Serpentes/genética , Adaptação Fisiológica , Aclimatação , Evolução Molecular , Filogenia , Evolução Biológica
4.
PeerJ ; 11: e14682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655040

RESUMO

The silkworm (Bombyx mori) is not only an excellent model species, but also an important agricultural economic insect. Taking it as the research object, its advantages of low maintenance cost and no biohazard risks are considered. Small open reading frames (smORFs) are an important class of genomic elements that can produce bioactive peptides. However, the smORFs in silkworm had been poorly identified and studied. To further study the smORFs in silkworm, systematic genome-wide identification is essential. Here, we identified and analyzed smORFs in the silkworm using comprehensive methods. Our results showed that at least 738 highly reliable smORFs were found in B. mori and that 34,401 possible smORFs were partially supported. We also identified some differentially expressed and tissue-specific-expressed smORFs, which may be closely related to the characteristics and functions of the tissues. This article provides a basis for subsequent research on smORFs in silkworm, and also hopes to provide a reference point for future research methods for smORFs in other species.


Assuntos
Bombyx , Animais , Bombyx/genética , Fases de Leitura Aberta/genética , Filogenia
5.
Nat Genet ; 54(8): 1248-1258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851189

RESUMO

Common oat (Avena sativa) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.


Assuntos
Avena , Genoma de Planta , Avena/genética , Diploide , Genoma de Planta/genética , Humanos , Poliploidia , Tetraploidia
6.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286217

RESUMO

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Assuntos
Locomoção , Árvores , Adaptação Fisiológica/genética , Animais , Anuros , Evolução Biológica , Fenômenos Biomecânicos , Genômica , Humanos , Locomoção/genética
7.
Biotechnol Lett ; 43(9): 1779-1785, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34129180

RESUMO

OBJECTIVE: To study the function of the RNA-binding protein Hfq in Bacillus subtilis cellulose decomposition. RESULTS: In the medium with sodium carboxymethylcellulose (Na-CMC) as the sole carbon source, the knockout of Hfq resulted in a 38.0% ± 2.1% and 76.6% ± 7.1% decrease in cellulose hydrolysis ability and cellulase activity, respectively. The results of real-time quantitative PCR revealed that several cellulase genes (eglS, bglA, and bglC) were significantly downregulated in the Hfq knockout strain. The isogenic Δhfq complemented strain recovered the cellulose hydrolysis ability, cellulase activity, and expression level of cellulase genes. In addition, the survival of Hfq mutant in stationary phase was significantly affected. CONCLUSION: RNA-binding protein Hfq is involved in the regulation of cellulose hydrolysis ability, cellulase activity, cellulase gene expression, and stationary phase survival.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Celulase/genética , Celulose/química , Fator Proteico 1 do Hospedeiro/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboximetilcelulose Sódica/química , Celulase/metabolismo , Meios de Cultura/química , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Fator Proteico 1 do Hospedeiro/metabolismo , Hidrólise
8.
PeerJ ; 9: e10818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604192

RESUMO

Wild (Bombyx mandarina) and domestic silkworms (B. mori) are good models for investigating insect domestication, as 5000 years of artificial breeding and selection have resulted in significant differences between B. mandarina and B. mori. In this study, we improved the genome assemblies to the chromosome level and updated the protein-coding gene annotations for B. mandarina. Based on this updated genome, we identified 68 cytochrome P450 genes in B. mandarina. The cytochrome P450 repository in B. mandarina is smaller than in B. mori. Certain currently unknown key genes, rather than gene number, are critical for insecticide resistance in B. mandarina, which shows greater resistance to insecticides than B. mori. Based on the physical maps of B. mandarina, we located 66 cytochrome P450s on 18 different chromosomes, and 27 of the cytochrome P450 genes were concentrated into seven clusters. KEGG enrichment analysis of the P450 genes revealed the involvement of cytochrome P450 genes in hormone biosynthesis. Analyses of the silk gland transcriptome identified candidate cytochrome P450 genes (CYP306A) involved in ecdysteroidogenesis and insecticide metabolism in B. mandarina.

9.
Sci China Life Sci ; 64(10): 1765-1780, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33481165

RESUMO

Animal body coverings provide protection and allow for adaptation to environmental pressures such as heat, ultraviolet radiation, water loss, and mechanical forces. Here, using a comparative genomics analysis of 39 mammal species spanning three skin covering types (hairless, scaly and spiny), we found some genes (e.g., UVRAG, POLH, and XPC) involved in skin inflammation, skin innate immunity, and ultraviolet radiation damage repair were under selection in hairless ocean mammals (e.g., whales and manatees). These signatures might be associated with a high risk of skin diseases from pathogens and ultraviolet radiation. Moreover, the genomes from three spiny mammal species shared convergent genomic regions (EPHB2, EPHA4, and NIN) and unique positively selected genes (FZD6, INVS, and CDC42) involved in skin cell polarity, which might be related to the development of spines. In scaly mammals, the shared convergent genomic regions (e.g., FREM2) were associated with the integrity of the skin epithelium and epidermal adhesion. This study identifies potential convergent genomic features among distantly related mammals with the same skin covering type.


Assuntos
Genoma/genética , Tegumento Comum/fisiologia , Mamíferos/genética , Adaptação Fisiológica , Substituição de Aminoácidos , Animais , Evolução Molecular , Genômica , Folículo Piloso/crescimento & desenvolvimento , Mamíferos/classificação , Filogenia , Seleção Genética
10.
Mol Biol Evol ; 37(6): 1744-1760, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077944

RESUMO

The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on the genetic underpinnings of the transition remains limited. Herein, we report the first genome of Shaw's sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high-quality genome. Gene family analyses date a pulsed coding-gene expansion to ∼20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved noncoding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbors the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.


Assuntos
Adaptação Biológica , Evolução Molecular , Genoma , Hydrophiidae/genética , Animais , Organismos Aquáticos , Elementos de DNA Transponíveis , Feminino , Anotação de Sequência Molecular , Família Multigênica
11.
Evol Appl ; 13(2): 263-277, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993075

RESUMO

The genetic paradox of biological invasions is complex and multifaceted. In particular, the relative role of disparate propagule sources and genetic adaptation through postintroduction hybridization has remained largely unexplored. To add resolution to this paradox, we investigate the genetic architecture responsible for the invasion of two invasive Asian carp species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) (bigheaded carps) that experience extensive hybridization in the Mississippi River Basin (MRB). We sequenced the genomes of bighead and silver carps (~1.08G bp and ~1.15G bp, respectively) and their hybrids collected from the MRB. We found moderate-to-high heterozygosity in bighead (0.0021) and silver (0.0036) carps, detected significantly higher dN/dS ratios of single-copy orthologous genes in bigheaded carps versus 10 other species of fish, and identified genes in both species potentially associated with environmental adaptation and other invasion-related traits. Additionally, we observed a high genomic similarity (96.3% in all syntenic blocks) between bighead and silver carps and over 90% embryonic viability in their experimentally induced hybrids. Our results suggest intrinsic genomic features of bigheaded carps, likely associated with life history traits that presumably evolved within their native ranges, might have facilitated their initial establishment of invasion, whereas ex-situ interspecific hybridization between the carps might have promoted their range expansion. This study reveals an alternative mechanism that could resolve one of the genetic paradoxes in biological invasions and provides invaluable genomic resources for applied research involving bigheaded carps.

12.
Sci Data ; 5: 180274, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30532075

RESUMO

The Lamiales order presents highly varied genome sizes and highly specialized life strategies. Patchouli, Pogostemon cablin (Blanco) Benth. from the Lamiales, has been widely cultivated in tropical and subtropical areas of Asia owing to high demand for its essential oil. Here, we generated ~681 Gb genomic sequences (~355X coverage) for the patchouli, and the assembled genome is ~1.91 Gb and with 110,850 predicted protein-coding genes. Analyses showed clear evidence of whole-genome octuplication (WGO) since the pan-eudicots γ triplication, which is a recent and exclusive polyploidization event and occurred at ~6.31 million years ago. Analyses of TPS gene family showed the expansion of type-a, which is responsible for the synthesis of sesquiterpenes and maybe highly specialization in patchouli. Our datasets provide valuable resources for plant genome evolution, and for identifying of genes related to secondary metabolites and their gene expression regulation.


Assuntos
Genoma de Planta , Pogostemon/genética , Transcriptoma , Poliploidia
13.
Evol Appl ; 11(10): 2040-2053, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30459847

RESUMO

The Milu (Père David's deer, Elaphurus davidianus) were once widely distributed in the swamps (coastal areas to inland areas) of East Asia. The dramatic recovery of the Milu population is now deemed a classic example of how highly endangered animal species can be rescued. However, the molecular mechanisms that underpinned this population recovery remain largely unknown. Here, different approaches (genome sequencing, resequencing, and salinity analysis) were utilized to elucidate the aforementioned molecular mechanisms. The comparative genomic analyses revealed that the largest recovered Milu population carries extensive genetic diversity despite an extreme population bottleneck. And the protracted inbreeding history might have facilitated the purging of deleterious recessive alleles. Seventeen genes that are putatively related to reproduction, embryonic (fatal) development, and immune response were under high selective pressure. Besides, SCNN1A, a gene involved in controlling reabsorption of sodium in the body, was positively selected. An additional 29 genes were also observed to be positively selected, which are involved in blood pressure regulation, cardiovascular development, cholesterol regulation, glycemic control, and thyroid hormone synthesis. It is possible that these genetic adaptations were required to buffer the negative effects commonly associated with a high-salt diet. The associated genetic adaptions are likely to have enabled increased breeding success and fetal survival. The future success of Milu population management might depend on the successful reintroduction of the animal to historically important distribution regions.

14.
Proc Natl Acad Sci U S A ; 115(33): 8406-8411, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30065117

RESUMO

Several previous genomic studies have focused on adaptation to high elevations, but these investigations have been largely limited to endotherms. Snakes of the genus Thermophis are endemic to the Tibetan plateau and therefore present an opportunity to study high-elevation adaptations in ectotherms. Here, we report the de novo assembly of the genome of a Tibetan hot-spring snake (Thermophis baileyi) and then compare its genome to the genomes of the other two species of Thermophis, as well as to the genomes of two related species of snakes that occur at lower elevations. We identify 308 putative genes that appear to be under positive selection in Thermophis We also identified genes with shared amino acid replacements in the high-elevation hot-spring snakes compared with snakes and lizards that live at low elevations, including the genes for proteins involved in DNA damage repair (FEN1) and response to hypoxia (EPAS1). Functional assays of the FEN1 alleles reveal that the Thermophis allele is more stable under UV radiation than is the ancestral allele found in low-elevation lizards and snakes. Functional assays of EPAS1 alleles suggest that the Thermophis protein has lower transactivation activity than the low-elevation forms. Our analysis identifies some convergent genetic mechanisms in high-elevation adaptation between endotherms (based on studies of mammals) and ectotherms (based on our studies of Thermophis).


Assuntos
Aclimatação/fisiologia , Altitude , Serpentes/genética , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Feminino , Endonucleases Flap/genética , Genoma , Hipóxia , Filogenia , Seleção Genética , Serpentes/fisiologia , Tibet , Raios Ultravioleta
15.
Environ Microbiol ; 20(5): 1711-1722, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528548

RESUMO

Carnivorous members of the Carnivora reside at the apex of food chains and consume meat-only diets, rich in purine, fats and protein. Here, we aimed to identify potential adaptive evolutionary signatures compatible with high purine and fat metabolism based on analysis of host genomes and symbiotic gut microbial metagenomes. We found that the gut microbiomes of carnivorous Carnivora (e.g., Felidae, Canidae) clustered in the same clade, and other clades comprised omnivorous and herbivorous Carnivora (e.g., badgers, bears and pandas). The relative proportions of genes encoding enzymes involved in uric acid degradation were higher in the gut microbiomes of meat-eating carnivorans than plant-eating species. Adaptive amino acid substitutions in two enzymes, carnitine O-palmitoyltransferase 1 (CPT1A) and lipase F (LIPF), which play a role in fat digestion, were identified in Felidae-Candidae species. Carnivorous carnivorans appear to endure diets high in purines and fats via gut microbiomic and genomic adaptations.


Assuntos
Bactérias/classificação , Evolução Biológica , Carnívoros/fisiologia , Gorduras na Dieta/administração & dosagem , Microbioma Gastrointestinal , Purinas/administração & dosagem , Ração Animal/análise , Animais , Bactérias/metabolismo , Carnívoros/genética , Carnívoros/microbiologia , Dieta , Gorduras na Dieta/metabolismo , Genoma , Metagenoma , Purinas/metabolismo
16.
Biomed Res Int ; 2017: 8201836, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698879

RESUMO

The Coptis chinensis Franch. is an important medicinal plant from the Ranunculales. We used next generation sequencing technology to determine the complete chloroplast genome of C. chinensis. This genome is 155,484 bp long with 38.17% GC content. Two 26,758 bp long inverted repeats separated the genome into a typical quadripartite structure. The C. chinensis chloroplast genome consists of 128 gene loci, including eight rRNA gene loci, 28 tRNA gene loci, and 92 protein-coding gene loci. Most of the SSRs in C. chinensis are poly-A/T. The numbers of mononucleotide SSRs in C. chinensis and other Ranunculaceae species are fewer than those in Berberidaceae species, while the number of dinucleotide SSRs is greater than that in the Berberidaceae. C. chinensis diverged from other Ranunculaceae species an estimated 81 million years ago (Mya). The divergence between Ranunculaceae and Berberidaceae was ~111 Mya, while the Ranunculales and Magnoliaceae shared a common ancestor during the Jurassic, ~153 Mya. Position 104 of the C. chinensis ndhG protein was identified as a positively selected site, indicating possible selection for the photosystem-chlororespiration system in C. chinensis. In summary, the complete sequencing and annotation of the C. chinensis chloroplast genome will facilitate future studies on this important medicinal species.


Assuntos
Coptis/genética , Evolução Molecular , Genoma de Cloroplastos , Anotação de Sequência Molecular
17.
PeerJ ; 5: e3303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533961

RESUMO

Coptis chinensis Franch., the Chinese goldthread ('Weilian' in Chinese), one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%). Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.

18.
Int J Mol Sci ; 17(6)2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27275817

RESUMO

Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais/genética , Pogostemon/genética , Análise de Sequência de DNA , Biologia Computacional/métodos , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Pogostemon/classificação
19.
Sci Rep ; 6: 26405, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27198881

RESUMO

Pogostemon cablin (Blanco) Benth. (Patchouli) is an important traditional Chinese medicinal plant that has both essential oil value and a broad range of therapeutic effects. Here we report the first de novo assembled 1.15-Gb draft genome sequence for P. cablin from next-generation sequencing technology. Our assembly, with a misassembly rate of <4 bp per 100 kb, is ~73% of the predicted genome size (1.57 Gb). Analysis of whole-genome sequences identified 3,147,333 heterozygous single-nucleotide polymorphisms and 490,407 insertions and deletions, giving an estimated heterozygosity rate of 0.274%. A comprehensive annotation pipeline indicated that repetitive sequences make up 58.55% of the assemblies, and that there are estimated 45,020 genes. Comparative genomics analysis showed that the Phrymaceae and Lamiaceae family split ~62.80 Mya, and the divergence between patchouli and sesame occurred ~52.42 Mya, implying a potentially shared recent whole-genome duplication event. Analysis of gene homologs involved in sesquiterpenoid biosynthesis showed that patchouli contains key genes involved in more sesquiterpenoid types and has more copies of genes for each sesquiterpenoid type than several other related plant species. The patchouli genome will facilitate future research on secondary metabolic pathways and their regulation as well as potential selective breeding of patchouli.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pogostemon/genética , Sesquiterpenos/metabolismo , Vias Biossintéticas , Evolução Molecular , Heterogeneidade Genética , Tamanho do Genoma , Lamiaceae/genética , Óleos Voláteis/metabolismo , Filogenia , Pogostemon/metabolismo , Análise de Sequência de DNA/métodos
20.
Sci Rep ; 6: 19029, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754549

RESUMO

Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.


Assuntos
Evolução Biológica , Dendrobium/enzimologia , Dendrobium/genética , Flores/crescimento & desenvolvimento , Genoma de Planta , Glicosiltransferases/genética , Sequência de Bases , Vias Biossintéticas , Evolução Molecular , Flores/genética , Genes de Plantas , Glicosiltransferases/metabolismo , Proteínas de Domínio MADS/genética , Família Multigênica , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...